77 research outputs found

    Multi-Phase Multi-Objective Dexterous Manipulation with Adaptive Hierarchical Curriculum

    Full text link
    Dexterous manipulation tasks usually have multiple objectives, and the priorities of these objectives may vary at different phases of a manipulation task. Varying priority makes a robot hardly or even failed to learn an optimal policy with a deep reinforcement learning (DRL) method. To solve this problem, we develop a novel Adaptive Hierarchical Reward Mechanism (AHRM) to guide the DRL agent to learn manipulation tasks with multiple prioritized objectives. The AHRM can determine the objective priorities during the learning process and update the reward hierarchy to adapt to the changing objective priorities at different phases. The proposed method is validated in a multi-objective manipulation task with a JACO robot arm in which the robot needs to manipulate a target with obstacles surrounded. The simulation and physical experiment results show that the proposed method improved robot learning in task performance and learning efficiency.Comment: Accepted by the Journal of Intelligent & Robotic System

    Stable In-hand Manipulation with Finger Specific Multi-agent Shadow Reward

    Full text link
    Deep Reinforcement Learning has shown its capability to solve the high degrees of freedom in control and the complex interaction with the object in the multi-finger dexterous in-hand manipulation tasks. Current DRL approaches prefer sparse rewards to dense rewards for the ease of training but lack behavior constraints during the manipulation process, leading to aggressive and unstable policies that are insufficient for safety-critical in-hand manipulation tasks. Dense rewards can regulate the policy to learn stable manipulation behaviors with continuous reward constraints but are hard to empirically define and slow to converge optimally. This work proposes the Finger-specific Multi-agent Shadow Reward (FMSR) method to determine the stable manipulation constraints in the form of dense reward based on the state-action occupancy measure, a general utility of DRL that is approximated during the learning process. Information Sharing (IS) across neighboring agents enables consensus training to accelerate the convergence. The methods are evaluated in two in-hand manipulation tasks on the Shadow Hand. The results show FMSR+IS converges faster in training, achieving a higher task success rate and better manipulation stability than conventional dense reward. The comparison indicates FMSR+IS achieves a comparable success rate even with the behavior constraint but much better manipulation stability than the policy trained with a sparse reward

    Curriculum-based Sensing Reduction in Simulation to Real-World Transfer for In-hand Manipulation

    Full text link
    Simulation to Real-World Transfer allows affordable and fast training of learning-based robots for manipulation tasks using Deep Reinforcement Learning methods. Currently, Sim2Real uses Asymmetric Actor-Critic approaches to reduce the rich idealized features in simulation to the accessible ones in the real world. However, the feature reduction from the simulation to the real world is conducted through an empirically defined one-step curtail. Small feature reduction does not sufficiently remove the actor's features, which may still cause difficulty setting up the physical system, while large feature reduction may cause difficulty and inefficiency in training. To address this issue, we proposed Curriculum-based Sensing Reduction to enable the actor to start with the same rich feature space as the critic and then get rid of the hard-to-extract features step-by-step for higher training performance and better adaptation for real-world feature space. The reduced features are replaced with random signals from a Deep Random Generator to remove the dependency between the output and the removed features and avoid creating new dependencies. The methods are evaluated on the Allegro robot hand in a real-world in-hand manipulation task. The results show that our methods have faster training and higher task performance than baselines and can solve real-world tasks when selected tactile features are reduced

    A Multi-Agent Approach for Adaptive Finger Cooperation in Learning-based In-Hand Manipulation

    Full text link
    In-hand manipulation is challenging for a multi-finger robotic hand due to its high degrees of freedom and the complex interaction with the object. To enable in-hand manipulation, existing deep reinforcement learning based approaches mainly focus on training a single robot-structure-specific policy through the centralized learning mechanism, lacking adaptability to changes like robot malfunction. To solve this limitation, this work treats each finger as an individual agent and trains multiple agents to control their assigned fingers to complete the in-hand manipulation task cooperatively. We propose the Multi-Agent Global-Observation Critic and Local-Observation Actor (MAGCLA) method, where the critic can observe all agents' actions globally, and the actor only locally observes its neighbors' actions. Besides, conventional individual experience replay may cause unstable cooperation due to the asynchronous performance increment of each agent, which is critical for in-hand manipulation tasks. To solve this issue, we propose the Synchronized Hindsight Experience Replay (SHER) method to synchronize and efficiently reuse the replayed experience across all agents. The methods are evaluated in two in-hand manipulation tasks on the Shadow dexterous hand. The results show that SHER helps MAGCLA achieve comparable learning efficiency to a single policy, and the MAGCLA approach is more generalizable in different tasks. The trained policies have higher adaptability in the robot malfunction test compared to the baseline multi-agent and single-agent approaches.Comment: Submitted to ICRA 202

    Learn and Transfer Knowledge of Preferred Assistance Strategies in Semi-autonomous Telemanipulation

    Full text link
    Enabling robots to provide effective assistance yet still accommodating the operator's commands for telemanipulation of an object is very challenging because robot's assistive action is not always intuitive for human operators and human behaviors and preferences are sometimes ambiguous for the robot to interpret. Although various assistance approaches are being developed to improve the control quality from different optimization perspectives, the problem still remains in determining the appropriate approach that satisfies the fine motion constraints for the telemanipulation task and preference of the operator. To address these problems, we developed a novel preference-aware assistance knowledge learning approach. An assistance preference model learns what assistance is preferred by a human, and a stagewise model updating method ensures the learning stability while dealing with the ambiguity of human preference data. Such a preference-aware assistance knowledge enables a teleoperated robot hand to provide more active yet preferred assistance toward manipulation success. We also developed knowledge transfer methods to transfer the preference knowledge across different robot hand structures to avoid extensive robot-specific training. Experiments to telemanipulate a 3-finger hand and 2-finger hand, respectively, to use, move, and hand over a cup have been conducted. Results demonstrated that the methods enabled the robots to effectively learn the preference knowledge and allowed knowledge transfer between robots with less training effort
    • …
    corecore